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Chapter 1

Introduction

Online retail has become an important channel across different industries, including fashion,

electronics, and grocery. In 2020, the total volume of retail sales contracted due to the imposed

COVID-19 quarantines and business closures. Despite this phenomenon, customers turned to online

channels to acquire goods, resulting in a total volume of retail e-commerce sales of $3.915B, a

16.5% increase comparing to 2019’s figures [8]. It is expected that the momentum introduced by

the pandemic will last as the majority (76%) of the customers that increased online spending admit

they will not return to the pre-outbreak buying patterns [12].

In grocery retail, although in-store pickups are available, companies often perform home

deliveries. Due to the perishability of the products sold in this business context, customers must

attend home deliveries, and thus, e-grocers resort to Attended Home Delivery (AHD). In such

delivery systems, the retailer delivers goods to customers within previously agreed delivery time

slots. Typically, customers’ requests proceed as follows: customers add the set of products to be

purchased to their shopping baskets and then proceed to the checkout; at this point, if they have not

logged in, they will be asked to do so. At the checkout, the customer is shown a specific price panel

containing all the available time slots. The customer then either chooses one of the available slots

to receive his shopping basket or walks away without finalizing his purchase.

While AHD avoids costly delivery failures, as customers have compromised on being home at

the moment of delivery, managing attended home deliveries entails a trade-off between operational

efficiency and customer satisfaction. On the one hand, the company will want to address its

customer base at the least cost possible. Suppose the company is incapable of managing the demand

and purely attends to customer preferences. In that case, there will be an unbalanced logistic load

through time as customers will tend to choose similar time slots, e.g., late afternoon time slots after

work hours. Consequently, either the company’s operation scales up to match peak demand, or the

promised delivery dates are in jeopardy. Moreover, geographically dispersed customers may place

orders over the same time slot, requiring much longer routes than if demand were geographically

clustered for each time window. On the other hand, if delivery efficiency is preferred, customers will

have fewer time slots to choose from or at unfair prices, leading to decreased customer satisfaction

and potential dropouts.
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2 Introduction

Therefore, there is an interest on the part of retailers in obtaining a more profitable operation by

applying demand management techniques. The key idea is to steer customers’ choice to delivery

time slots with lower operating costs, thus maximizing profits, while maintaining an adequate level

of customer service. To accomplish so, retailers might resort to different demand management

methods, e.g., restricting the number assortment of time slots they present to particular customers

(slotting), offering discounts or shopping points for less attractive time slots, etc.

From the many demand management tools retailers have at their disposal, pricing, particularly

dynamic pricing, stands out as a mighty lever to manage demand in real-time. With dynamic

pricing, the e-grocer is able to best adapt the price panel for each incoming customer by taking

into account not only already accepted orders but expected future requests, as well as incoming

customer information, i.e., their location, profit resulting from their shopping basket, and their

Willingness To Pay (WTP) for different time slots.

The underlying optimization problem of the time slot prices is known as the Dynamic Time Slot

Pricing Problem (DTSPP). Its standard formulation consists of a stochastic dynamic programming

model used as a framework by several authors in academic literature [23],[9],[10]. The DTSPP

model, however, cannot be solved to optimality for several reasons. First, it suffers from the curses

of dimensionality [16]. Second, deriving the opportunity costs, which encompass delivery costs,

requires solving a Vehicle Routing Problem With Time Windows (VRPTW) for each incoming

customer and time slot. Third, the customer’s choices ultimately result from the decision, i.e., the

time slot prices, and must be anticipated via a customer’s choice model.

Two more sources of complexity arise from the application in a fast-paced real e-commerce

environment. As it is an online problem, the decision concerning which price panel to show to the

customer must be made in fractions of a second. Additionally, the DTSPP involves the cooperation

of stakeholders from different company divisions, namely, marketing and operations. Given the

distinct goals of the involved parties, a transparent and reliable tool is required to assist the dialogue

between them.

To tackle the challenges posed by employing the DTSPP in a real environment, we propose

a problem decomposition and approximation methods based on Artificial Intelligence (AI). We

estimate the delivery costs of inserting a customer in each time slot through a Machine Learning

(ML) regression model. For the customer’s choice model, we take a significant leap forward in the

state-of-the-art and model customer behavior at a granular level, i.e., for each customer. With the

intent of shedding light on customer preferences, we propose two explainable artificial intelligence

(XAI) approaches to model customer behavior: a Black-Box Model (BBM) followed by a feature

contribution study; and an interpretable symbolic expression learned by Genetic Programming

(GP). Additionally, we present a heuristic that combines the customer choice model with both the

estimations of the delivery cost and occupation targets to prescribe a price panel for each incoming

customer.

The remainder of this document is organized as follows. In Chapter 2 we describe the business

context and the dynamic time slot pricing problem that will be faced by the considered retailer

in the future. Chapter 3 details the main components of the solution approach that is proposed
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to solve the dynamic problem faced by the retailer. This approach is composed of two predictive

models and a prescriptive heuristic to decide the best time slot pricing panels to be shown. In

Chapter 4, the results regarding the three components of the solution approach are presented. The

explainability of the different models and algorithms is also discussed. In Chapter 5, we present the

main conclusions derived from the research undertaken until this moment and provide an overview

on future improvements and research ideas to be included in the current models and solution

approach.
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Chapter 2

Problem Description

In this chapter, we first present the business context and the challenge faced by the online retail

partner considered in Section 2.1. Section 2.2 presents an illustrative example of the steps followed

by a customer in the online platform, and the steps followed by the online retailer to prescribe

time slot prices. In Section 2.3, we formally describe the problem tackled by the online retailer

as a DTSPP and model it as a sequential decision problem, more specifically, a Markov Decision

Process (MDP). Finally, in Section 2.4 we introduce the explainability challenges associated with

the DTSPP we aim to solve.

2.1 Business context

The retail partner considered in this use case operates a set of physical retail stores geographically

spread across the country. These physical stores are served by large distribution centers where

products are prepared in pallets to be sent to the physical stores. At the same time, some of

these retail stores and distribution centers are responsible for preparing online orders, placed in

the website of the retailer. These online orders are later delivered to the customers by providing

AHD services. To provide these services, the retailer manages logistic resources, such as a fleet of

delivery vehicles and drivers, and defines the pricing decisions appearing in the website. In this

business context, AHD services are still in their infancy. Therefore, retailers are still searching for

better planning processes to further improve resource utilization and increase profits.

In the current approach adopted by the considered retailer, pricing decisions are subject to

periodic reviews, where new pricing policies to guide time slot prices are formulated and tested

directly in a real-world context. If the experiment yields satisfactory results from the perspective

of the decision maker, the new pricing policies are implemented in the website. The ruling of the

decision-maker is mostly empirical and fails to grasp the fine balance between customer satisfaction

and the impact on fulfillment operations. Additionally, there is no risk nor sensitivity analysis as

the monolithic process architecture requires a real-world experiment for the assessment of each

scenario. An additional pitfall of the current approach is that it relies on a tactical perspective,

disregarding the operational factor that is inherent to the online retail business. Hence, the time slot

5



6 Problem Description

offerings are not tailored to the profile of each customer, his/her buying behavior, or his/her current

shopping basket, nor do they take into consideration the current or predicted load on the fulfillment

operations or the cost to serve such customers. The aggregated effect of empirical decision-making

allied with the non-existent operational perspective manifests in a lack of control over the selection

of time slots by the customer pool, leading to upstream operational inefficiencies. Orders tend

to be clustered around the preferred times of day, causing oscillating loads on warehouse and

delivery operations. As the fulfillment capacity is mostly non-elastic, peak periods of demand tend

to generate order backlog and inefficient delivery routes.

In the approach to be implemented in the future, time slot prices are dynamic. This means that

they are computed every time a new customer enters the web site. To compute these dynamic time

slot prices, the considered online retailer intends to analyze customer-related data, such as (1) the

value of the shopping basket to be purchased; (2) the shopping profile of the customer according to

past online purchases; (3) the preferred time slots; (4) the delivery fees charged in the past; and

(5) the current state of the fulfillment capacity according to the orders that were already accepted.

These data will then be used to decide upon the best time slot pricing panel to be shown to the

customer. By tackling the problem from an operational dynamic pricing perspective, the trade-off

between customer service / satisfaction and delivery efficiency can be accurately modeled.

Instead of pursuing simplistic tactical rules that fail to cater the needs of each customer, the

proposed dynamic time slot pricing policies are aimed at steering customer choices. The objective is

to nudge customers into selecting time slots that are beneficial both in terms of delivery operations

(ex: inducing vehicle routes with good time window slacks) and in terms of profit (ex: by charging

higher prices in preferred time slots), bearing in mind that delivery fees influence the probability of

each customer to reject the proposed offers and walk-away from the website.

2.2 Illustrative example

The dynamic time slot pricing approach to be implemented maps into a new problem to be solved

by the considered online retailer. Before formalizing this new problem as a sequential decision

problem, we present Figure 2.1 to illustrate the perspectives of the online retailer and customers.

Retailer The online retailer receives customer arrivals at its website during a booking horizon (ex:

several days). At the checkout of each customer, the retailer finds a decision point where a

price panel needs to presented. This price panel contains the prices for the delivery time slots

that are open at that particular moment. This process continues until the booking horizon

closes at a predefined cut-off time. This cut-off defines the moment at which a set of time

slots related to a particular time period is closed (i.e., does not accept additional customer)

and a delivery schedule needs to be defined by solving a VRPTW.

Customer Each customer first decides upon a set of products to be purchased, the shopping basket.

At the checkout, the customer is shown a specific price panel containing all the time slots
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Figure 2.1: Overview of decision points encountered by the retailer and the customer during an
online purchase.

available at the moment. The customer needs then to decide if he books an AHD to receive

its shopping basket or if he walks-away without finalizing its purchase.

Note that, in the static approach, time slot prices were defined at a tactical level and remained

unchanged for longer periods. In the new dynamic pricing paradigm, the online retailer is responsi-

ble for a decision point where it needs to compute a price panel to be shown. This process needs to

be executed in fractions of a second, making it impossible to use complex mathematical solvers to

solve the problem without any compromise or approximation. For that reason, the retailer needs to

adopt solution methods that are capable of extracting pricing policies that can be executed in an

online retail environment, within a very tight computational budget.

2.3 Formalization

The challenge faced by the online retailer considered in this use case is associated with a DTSPP. In

this problem, an online retailer serves customers within a predefined delivery region, using a single

depot. A unique delivery location is associated with each customer i ∈ C = {1, ...,C}, thus we

use these terms interchangeably. During a certain booking horizon, customers place online orders

dynamically and stochastically and, for each order, they book an AHD by choosing a specific time

slot w ∈ ∆ = {1, ...,W} at a certain period d ∈ D = {1, ...,D}. This booking horizon closes at a

so-called cut-off time and is followed by a service period in which the accepted customers will

be visited by vehicle routes. These visits are to be performed within the time slot w and period d

that was chosen by the customer, meaning that the vehicle must arrive at the customer between an

earliest time awd and a latest time bwd .
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Let us now specify the components of the MDP that models the DTSPP as a sequential decision

problem. We start by defining a decision epoch and the state variable. Then, we define the decision

variables, exogenous information, transition function, and objective function (see [16]).

2.3.1 Decision epochs

A new decision epoch k begins whenever a new customer i arrives at the online platform of the

retailer. Therefore, the number of decision epochs comprised in the considered MDP is equal to the

number of customers C.

2.3.2 States

A state Sk describes all the relevant information at the beginning of decision epoch k, just before

a new customer arrival. This information is used to compute state transitions, decisions, and

contributions. Therefore, in the considered DTSPP, a state comprises information about the

customers that have been revealed until decision epoch k, and their choices regarding time slots

booked or walk-away events. Moreover, the state comprises additional information regarding

the state of the system, namely, the current situation in terms of Advanced-Booking Time (ABT)

curves for each time slot. These curves indicate the desired occupation level (a percentage of slot

capacity) at each time instant between the opening and cutoff times of each time slot. For the sake

of simplicity, we formally define these curves later in the document. Formally, we define the state as

a vector Sk = (Sik)C×1, with an entry Sik dedicated to each customer. If the customer has not arrived

yet or has arrived but did not book a time slot, Sik = (0,0). If the customer has already arrived and

booked a time slot w on a certain period d, Sik = (w,d). At the initial state S0, corresponding to

the beginning of the booking horizon, Sik = (0,0) for every customer. Upon the arrival of a new

customer, new information is revealed regarding the value of its shopping basket, geographical

location, willingness-to-pay, and the price point p ∈P = {1, ...,P} charged for the chosen time

slot.

2.3.3 Decisions

The online retailer makes decisions on the time slot price panels to be shown to each customer. A

price panel characterized by a set of available time slots and their corresponding delivery fees. This

price panel decision is dynamic, meaning that it will change over time depending on the current

state variables and on the exogenous information revealed by the new customer arrival. More

specifically, the online retailer needs to decide the delivery fee fwdk for booking a delivery at time

slot w in period d in decision epoch k. This fee can be chosen from the set of price points P . Each

price point is associated with a price πp, hence fwdk ∈ {π0, ...,πP}. We assume that all price points

are possible for all time slots. Let fk = ( fwdk)W×D×1 be the matrix denoting the decisions made in

decision epoch k regarding delivery fees of each time slot. Note that a customer can always choose

to walk-away for free by selecting (w,d) = (0,0) and this option is associated with a fee f00k = 0
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2.3.4 Transitions

Customers are known to have heterogeneous preferences concerning delivery time slots. The online

retailer does not fully know these preferences, but they can be inferred from past online orders

using a choice model to estimate the probabilities Pwd(fk) that a customer that just arrived chooses

time slot w and period d. The probability for a customer to walk-away without booking a delivery

is, therefore, given by P00(fk) = 1− ∑
w∈∆,d∈D

Pwd(fk). The online retailer is able to manipulate this

time slot choice probabilities according to its decisions regarding the price panels to be shown.

Whenever a customer books an AHD, the retailer receives a contribution composed by the value of

the shopping basket bk purchased by the customer and a delivery fee fwdk. Additionally, the retailer

incurs in a delivery cost, as it is committed to serve the customer within the chosen time slot during

the service period in which the vehicle routes will be executed. Here, the system transitions from

state Sk to a new state that is defined with the operator Γ(Sk,w,d), which updates the variables

regarding the customer that arrived at decision epoch k, changing Sik to (w,d). Adopting this

notation, the transition to the next state is given by

Sk+1 =

Sk, if the customer walks-away

Γ(Sk,w,d), if the customer chooses time window w on on d
(2.1)

2.3.5 Contributions

In each decision epoch k, the online retailer receives a contribution that is computed considering

the value of the basket bk to be purchased by the new customer, the delivery fee that is charged for

the chosen time slot (w′,d′), and an opportunity cost owdk(Sk) for booking time slot (w,d) in state

Sk (i.e, an expected profit loss due to using the capacity of a time slot).

Rk = bk + fw′d′k−ow′d′k(Sk) (2.2)

The first two terms bk and fw′d′k are determined straightforwardly, as the basket value is known

immediately after the customer selects an item list and chooses a time slot for a price set by the

retailer, respectively. The key factor to achieve the overarching profit maximization goal resides on

the opportunity cost ow′d′k(Sk) estimation. Section 3 delves into the approach used to quantify this

term, which involves estimating the customer’s contribution to the final transportation costs, as well

as assessing how his selection will let the real slot occupation curves approximate the tactically

defined ones.

2.3.6 Objective

The objective function to be pursued by the online retailer is to maximize the total expected profit

coming from following an optimal policy. This policy consists on choosing the best price panels to

show for all customer arrivals during the booking horizon, and to optimally solve a VRPTW to
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be executed during the service period. In each decision state Sk, the possible decision concerning

delivery fees fwdk are evaluated to solve the online pricing problem.

max
fk

{
∑

w∈∆

∑
d∈D

Pwd(fk)
(
bk + fwdk−owdk(Sk)

)}
(2.3)

Note that to solve this problem, a suitable customer choice model must be specified and

an optimization problem must be solved. Due to the large number of possible decision (and

problems to solve), this dynamic problem must be solved using clever problem decomposition and

approximation methods.

2.4 Explanations

The problem formalized in Section 2.3 can be solved in several steps by solving a set of subproblems.

Depending on the solution methods used to solve it, different types of explanations can be used.

At the current state of the project, explanations are provided for a particular phase of the

solution approach presented later in this document, which concerns to the prediction of the WTP of

each customer. In this subproblem, which is a supervised machine learning problem, a decision

function f : Rd → R is learned based on tabular training data with d dimensions, composed by

pairs (x1,y1, ...,xn),yn. The training points are given by xi, and the training labels are given by yi.

In this use case, the prediction of the WTP is treated as a binary classification problem

and is solved both through GP and Gradient Boosting Machine (GBM) techniques, that are

described later in this document. These two approaches allow for different types of explanation and

typically achieve different levels of performance. In this project, we rely on two different types of

explainability, ad-hoc and post-hoc [3].

2.4.1 Ad-hoc explanation

When referring to ad-hoc explainability, we focus on explainable-by-design models, which, in the

context of TRUST-AI, are symbolic expressions. These symbolic expressions can be interpreted

by humans and are often represented in trees to facilitate their visualization. They are typically

obtained through an evolutionary process and can consider several terminals (i.e., features) and

mathematical and logical operators [11]. During the evolutionary process, individuals (i.e. symbolic

expressions) are mutated or crossed-over iteratively to generate new individuals. In each generation,

a selection procedure is performed in order to maintain the best individuals in the population (i.e,

the ones with the best fitness) that will migrate to the next generation. the evolutionary process is

stopped when certain stopping criteria are met (e.g. a maximum number of generations).

The symbolic expressions obtained by this process are typically considered explainable for

three main reasons. First, they are seen as white-box models that can be easily inspected in terms

of input and output variables. Second, decision makers and domain experts can be included in

the evolutionary process, suggesting feature combinations that describe important business-related
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issues. Third, the size of the models is controllable and can be used to obtain expressions with

small sizes, which tend to be easier to understand and interpret.

Regarding the prediction of the WTP of each customer, we consider that the symbolic expres-

sions generated by the adopted GP algorithms are explainable-by-design. The process of selecting

the expressions that are better understood by the decision makers is the real explanation problem

we face.

2.4.2 Post-hoc explanation

Post-hoc explanations are typically obtained by an explanation algorithm E that operates on the

decision function f with the objective of explaining it. In local post-hoc explanations, the algorithm

E is queried with a data point x and the corresponding decision y, and provides an explanation

E(x,y). This explanation should explain why decision function f made decision y for x. Commonly

used post-hoc explanation algorithms are LIME, SHAP, and DiCE [17, 14, 15], which do not

provide a global view on the decision function, but try to explain individual decisions y = f (x).

To obtain explanations for the WTP binary classification problem, we resort to the techniques

based on Shapley values (used in SHAP), which aim at quantifying the influence of each input-

feature for a particular decision. The resulting explanations correspond to the linguistic form “The

high price of this time window was relevant for the customer walk-away”.

SHAP is based on additive feature attribution methods, which are based on an explanation

model that is a linear combination of binary variables:

g(z′) = φ0 +
M

∑
i=1

φi z′i (2.4)

where z′ ∈ {0,1}M, M is the number of simplified input feature, and φi ∈ R.

Methods with explanation models matching equation 2.4 attribute an effect φi to each feature,

and summing the effects of all feature attributions approximates the output f (x) of the original

model. An attribute of the class of additive feature attribution methods is the presence of a single

unique solution in this class with three desirable properties, namely. The first property, local

accuracy, requires the explanation model to at least match the output of f for the simplified input x′

(which corresponds to the original input x). The second property, missingness, requires features

missing in the original input to have no impact, if the simplified inputs represent feature presence.

The third property, consistency, ensures that if a model changes so that some simplified input’s

contribution increases or stays the same regardless of the other inputs, then that input’s attribution

should not decrease. Only one possible explanation model g follows equation 2.4 and satisfies the

referred properties.

φi( f ,x) = ∑
z′⊆x′

|z′|!(M−|z′|−1)!
M!

[ fx(z′)− fx(z′\i)] (2.5)

where |z′| is the number of non-zero entries in z′, and z′ ⊆ x′ represents all z′ vectors where the

non-zero entries are a subset of the non-zero entries in x′.
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SHAP is a unified approach that improves previous methods, preventing them from uninten-

tionally violating any of the three properties. It provides a unified measure of feature importance.

These are the Shapley values of a conditional expectation function of the original model; thus, they

are the solution to Equation 2.5.



Chapter 3

Solution Approach

The methodology developed to address the Dynamic Time Slot Pricing Problem (DTSPP) comprises

three distinct modules. Section 3.1 describes how these are arranged to provide slot prices while

taking into account the aforementioned problem trade-off. Then, sections 3.2 and 3.3 present the

customer choice behavior model and the transportation cost estimation model, respectively. Finally,

the procedure used to prescribe time slot prices is explored in Section 3.4.

3.1 Approach Overview

The overarching goal of the DTSPP is to prescribe time slot prices capable of maximizing profit

while ensuring customer satisfaction and operational efficiency. Thus, while presenting a time slot

price panel offering, we need to know how the customer will respond to it, i.e., which time slots

will he be more willing to select or if there is an increased chance that he will withdraw the order.

Simultaneously, anticipating the cost to deliver the customer order in each time slot is essential

so that price can act as a mechanism to steer him way from selecting those more costly from an

operational standpoint (or, conversely, nudge him into selecting those whose delivery would be

more efficient).

The diagram presented in Figure 3.1 provides a scheme of the approach taken to generate prices

weighing the service-efficiency trade-off. By considering the features of the time slot offering

and the customer, as well as those pertaining to how he relates to each time slot option (e.g.,

historical percentage of orders where the customer selected a particular time slot), it is possible to

model his choice behavior. Knowing the location of the customer and logistics constraints, e.g.,

geographical dispersion of previously accepted customers or the current occupation of each time

slot, an estimation for the delivery cost can be obtained. Finally, using the output of these two

models, the prescriptive heuristic can generate alternative time slot price panels and select the one

whose contribution to the objective is more favorable.

13
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Figure 3.1: Overview of the solution approach for the DTSPP

3.2 Willingness To Pay Model

The Willingness To Pay (WTP) model consists of a customer choice behavior model whose goal

is to anticipate customers’ responses to different time slot price panels. In the context of the

DTSPP, an approach capable of determining the customer’s preference for each displayed slot or

the withdrawal option as a function of the prices prescribed is desirable. Ultimately, we want to

determine the selection probability of each option, and there should be coherence in terms of price

sensitivity, i.e., increasing the price of a slot decreases its selection probability and leads to an

increase in the average choice probability of competitor slots, and likewise for the opposite case.

3.2.1 Modeling Approach

The method used to obtain the WTP model was selected based on the data provided by the retailer.

The analyzed dataset contained information pertaining to customers that confirmed their order by

selecting a time slot. Customers that withdraw their orders after being presented a set of time slots

are not tracked by the company. Therefore, it is not possible to infer the withdrawal probability

based on the available data. To overcome this adversity, we estimate the walkaway probability

using the WTP model.

3.2.1.1 Customer Selection Probability Modeling

To obtain the WTP model, we treated this problem as a binary classification problem. Therefore,

our WTP model determines the selection probability for each (customer, slot) pair. It could be

argued that this problem could be modeled as a multi-label classification problem, where a score

would be computed for each alternative time slot. However, due to the dynamic nature of the

problem, the slots, and, therefore, the labels, would vary substantially as some slots would close

due to capacity or cutoff times. Ultimately, the meaning of each label would depend on the instant

the order was placed. Alternatively, a regression to predict the customer reservation price could be

implemented. Nevertheless, historical data does not provide us with the reservation price as we do
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not know whether the customer would still be willing to book the same slot for a higher price than

the one accepted.

The algorithm selected to perform this predictive task was the gradient boosting machine

(GBM). Gradient Boosting Machine (GBM) is a machine learning (ML) technique used for both

regression and classification problems that has proven to outperform other approaches such as

artificial neural networks in particle identification problems [6].

The performance metric used to assess the derived models was the log-loss. The log-loss is an

error metric widely used in classification problems as it quantifies how far off are the prediction

probabilities outputted by the model from the true value for the observation. Considering a dataset

with N points, p = [pi]N to be the prediction probability of observation i belonging to class 1, and

y = [yi]N the actual value of each observation, the log-loss is given by the expression described in

equation (3.1).

log-loss =− 1
N
·

N

∑
i=1

[yi · ln pi +(1− yi) · ln (1− pi)] (3.1)

3.2.1.2 Walkaway Probability Estimation

Another aspect of paramount importance when analyzing transitions between states is the likelihood

of the occurrence of walkaways, as a fleeing customer entails a loss in revenue equal to the total

basket value. In real terms, a customer may walkaway from an order when being provided with a

price panel that surpasses his/hers willingness to pay (also referred to as reservation price) on all

time slot options available.

Given that the retailer does not currently collect data on orders not finalized, we devised an

approach for walkaway probability estimation that relies on the assumption that there is a given

prevalence of walkaways (α∗) for the current pricing policy.

Borrowing inspiration from research on diffusion models for innovations, the walkaway prob-

ability is assumed to have an S-shape dependence with the maximum non-scaled probability of

selection of a time slot belonging to a price panel [4]. In particular, it is assumed that this relation-

ship follows the equation 3.2. The localization parameter c1 controls the inflection point, while the

shape parameter c2 controls the first derivative, tied to the rate of decrease of the response variable.

w(x) =
1

1+ e−c2·(x−c1)
(3.2)

This approach has empirical backing on the principle of diminishing returns. The probability

of a walkaway decreases as the maximum probability of selection increases. For very high

time slot prices, all time slot options surpass the customer’s reservation price, culminating in a

walkaway probability that tends to 1. As the slot prices decrease and get closer to the customer’s

reservation price the rate of walkaway probability decreases at an ever-growing pace. The principle

of diminishing returns governs slot price drops that go beyond the inflection point c1. As slot prices

tend to 0, the walkaway probability slowly progresses towards 0. This behavior is presented in

Figure 3.2.
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The challenge, then, becomes in determining the set of constants c1 and c2 that instantiate the

generic equation 3.2 to a pre-determined global walk-away prevalence α∗. To this extent, we made

use of Optuna, a flexible and scalable search framework that combines efficient parameter sampling

and pruning to traverse the parameter search-space [1]. The goal is to explore different regions of

the search space composed of the admissible ranges for c1 and c2, exploiting those that lead to the

more promising fitness function values depicted in 3.3.

min |α∗− 1
N
·

N

∑
i=1

wc1,c2(xi)| (3.3)

Figure 3.2: S-shaped evolution of walkaway probability (above) and rate of walkaway decrease
(below) as a function of the maximum selection probability for a given panel

3.2.2 Feature Engineering

The DTSPP concerns pricing decisions at a customer level. To present a price panel tailored to each

customer’s preference, the WTP model should contemplate the features of the customers and their

corresponding orders. Table 3.1 presents the features pertaining to these two partitions. Regarding
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the characterization of customers, we extracted features indicating their longevity and loyalty

concerning the AHD service, using, for example, the number of days since the first purchase and

the number of purchases, respectively. In terms of the order itself, the focus centered on capturing

the level of urgency or the absence of it, e.g., an order with a considerable portion of fresh produce

might indicate urgency as the customer might want to receive them quickly as these are typically

essential in a household.

Ultimately, the WTP model should provide the customer selection probability for each time

slot that composes the panel. Therefore, it is important to provide features that might influence the

utility attributed by the customer to each slot option. In Table 3.2, we include features intrinsically

related to the slot (S), but also those capturing the relationship between a customer and a slot (CS).

Regarding the first partition, beyond including the price of the slot, which is a decision variable

of the DTSPP, we also add features mentioned in the literature as being important drivers of a

customer preference in the context of AHD: service speed, measured by the distance between the

moment of ordering and delivery (slot_start), and width. In terms of partition CS, we tried to

capture customers typical selection behavior by determining if the day of the week of the slot under

analysis is frequently chosen by them (freq_slot_dow), or by assessing the proportion of times that

a customer selected a particular slot in the past (exact_selection_customer_perc).

We model the response of a customer to a given price panel as a binary classification problem.

Thus, we characterize the relationship between pairs of customers and time slots. As a consequence,

our methodology inherently disregards the existence of competition among time slots and the

interdependent nature of the selection probabilities of the options in a given panel. To overcome

this shorted-sighted approach, we created a feature partition that captures the price distribution of

the whole price panel, P, which is detailed in Table 3.3. By including such features, we ensure that

the derived WTP model deems that the selection probability of a given time slot is sensible to price

changes in competitor slots.

3.2.3 XAI Approach

Although UC2’s goal is to provide a toy problem and its corresponding solution approach, which

will progressively integrate the TRUST framework, the WTP modeling problem was used as a

testing tube to benchmark explainable artificial intelligence (XAI) techniques. More specifically, we

tested two approaches: (1) a two-step approach in which, building on the Black-Box Model (BBM)

generated by the GBM, we applied SHAP (SHapley Additive exPlanations) to build a posteriori

explanations; and (2) learning an explainable-by-design symbolic model through regression using

GP-GOMEA.

3.2.3.1 Post-hoc explainability approach

SHAP is a Python library that explains the output of ML models by using the concept of Shapley

values from game theory [13]. In the context of ML, Shapley values determine a feature’s contribu-

tion to the prediction made by the model. Summarily, the contribution of each feature is computed
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Table 3.1: Customer (C) and order (O) feature sets for the WTP model

Feature Description Partition

npurchases total number of past purchases made by the cus-
tomer C

expanding_freq_weekend_delivery proportion of past purchases where the customer
requested a delivery on a weekend C

previous_weekend_delivery flag indicating wether the last slot selection was on
a weekend or not C

expanding_avg_days_to_delivery average number of days between delivery date and
order date C

freq_dow_selections
proportion of past slot selections made by the cus-
tomer for a day of the week (dow) (where dow:
Sunday - Saturday)

C

expanding_{measure}_slot_price historical minimum, maximum and average deliv-
ery price paid by the customer C

previous_slot_price delivery price paid by the customer in his last pur-
chase C

first_online_purchase flag indicating whether it is the first time the cus-
tomer uses the AHD service C

days_since_last_order number of days elapsed since the last purchase
made by that customer C

days_since_first_purchase longevity of the customer C

days_between_purchase average number of days between historical pur-
chases made by the customer C

total_last_purchase total amount paid in the last purchase C

expanding_total sum of the total historical amount that a customer
has spent up to that point C

expanding_total_avg average historical amount that a customer has spent
per purchase up to that point C

order_dow order dow O
total total amount paid by the current shopping basket O

nsku number of individual articles in the current shop-
ping basket O

freshpercent percentage of fresh products in the current shop-
ping basket O

discountpercent discount percentage on the current bill O

orderperiod time of day of order placement, e.g., morning or
afternoon O

previous_requested_amount total requested amount on the previous purchase
made by the customer O

expanding_successful_picking_amount expanding sum of the successfully picked amount
in purchases made by the customer up to that point O

expanding_substitution_picking_amount expanding sum of the substituted amount in pur-
chases made by the customer up to that point O

expanding_requested_amount expanding sum of the historical requested amount
made by a customer up to that point O

expanding_successful_picking
average picking success rate (weighted in by
amount) in the purchases that the customer had
made up to that point

O

expanding_substitution_picking
average substitution rate (weighted in by amount)
in the purchases that the customer had made up to
that point

O

previous_successful_picking_amount amount of the items successfully picked in the last
purchase O

previous_substitution_picking_amount amount of the items substituted in the last purchase O
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Table 3.2: Slot and customer-slot relationship feature sets for the WTP model

Feature Description Partition

slotcost the slot price presented to the customer S
slot_dow the delivery dow (0: Sunday - 6: Saturday) S

slot_start the start of the time slot in minutes since the mo-
ment of ordering S

slot_end the end of the time slot in minutes since the mo-
ment of ordering S

slot_start_w the start of the time slot in minutes since the start
of the week S

slot_end_w the end of the time slot in minutes since the start
of the week S

slot_width the slot width in minutes S

weekend_delivery flag indicating whether the slot dow is on a week-
end S

slot_time slot start and finish times in the following format
’start_time - end_time’, e.g., ’14:00 - 18:00’ S

partial_selection_customer_perc proportion of past slot selections intersecting with
the dow and time frame of the slot CS

exact_selection_customer_perc proportion of past slot selections that exactly match
the dow and time frame of the slot CS

freq_slot_dow proportion of past slot selections on the same dow
as the slot’s dow CS

preferred_slot_dow flag indicating whether the current slot dow is the
one the customer historically prefers CS

Table 3.3: Price panel feature set for the WTP model

Feature Description Partition

min_cost minimum slot price presented to the customer on
the current order P

q1_cost first quartile of slot price presented to the customer
on the current order P

median_cost median slot price presented to the customer on the
current order P

q3_cost third quartile of slot price presented to the customer
on the current order P

max_cost maximum slot price presented to the customer on
the current order P

cv_cost coefficient of variation in the slot prices show to
the customer in the current order P

iqr_cost interquartile range of the slot prices presented to
the customer on the current order P
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by comparing the original predictions for each instance by the predictions made on instances where

the feature is replaced by its mean value [18].

By relying on domain knowledge, it is possible to state that a model determining the selection

probability of a time slot by a customer should be highly dependent on its price and time slot

attributes. For instance, slot width is a determining factor since the customer will have a more

precise estimate of the time of delivery for narrower time slots. Additionally, features such as

distance to the beginning of the time slot, i.e., delivery speed, and the number of displayed time

slots, i.e., availability, are also important drivers for selection [2]. Furthermore, the past relationship

between the customer and the time slot is essential as the selection probability should be higher if

the customer selected the time slot in the past. To assess the importance of these and the remaining

features used by our model, we based our analysis on the SHAP bar plot. Figure 3.3 displays an

example plot for an ad-clicking prediction problem where it is possible to observe that features are

ranked according to their importance, i.e., their mean absolute SHAP value.

Figure 3.3: Example of a SHAP bar plot for an ad-clicking prediction problem

As explained in 3.1, price is an important feature in the context DTSPP. To guide our pricing

heuristic, it is desirable that our WTP model is sensible to price and that its impact is coherent on

selection probability variations, i.e., positive price shifts decrease the selection probability of a time

slot, vice-versa. With the purpose of assessing the consistency of our models, we plotted the SHAP

summary graph to visualize the effect of each feature over the dataset. Using the same ad-clicking

prediction problem as an example, Figure 3.4 presents the respective SHAP summary plot.

Similarly to the bar plot, the SHAP summary plot also orders the features in terms of decreasing

importance. For each feature, instances are plotted on the x axis according to their SHAP value and

color grading based on their feature value, i.e., lower values assume blueish colors, while higher

values tend to a purplish color. Focusing on the most important feature, as computed by SHAP, it is

possible to observe that users who consume more internet on a daily basis are less likely to click on

an add.
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Figure 3.4: Example of a SHAP summary plot for an ad-clicking prediction problem

3.2.3.2 Ad-hoc explainability approach

With the purpose of presenting an alternative to the traditional post-hoc explainability approach, we

set out to model customer selection behavior using explainable-by-design symbolic expressions.

Centering decisions and explanations on the same model allows the decision-maker to directly

interpret and adjust the model in an iterative way as it is learned, i.e., achieve human-guided

symbolic learning [7].

The analytical WTP expression was derived through symbolic regression using GP-GOMEA

[20]. GP-GOMEA consists of a Genetic Programming (GP) algorithm that applies the Gene-pool

Optimal Mixing Evolutionary Algorithm (GOMEA), a model-based EA. The distinctive element of

GP-GOMEA relative to standard GP is a variation operator capable of exploiting linkage models

by combining partial solutions [19].

Performing symbolic regression entails searching the space of mathematical expressions that

can be formed using a primitive set P encompassing a group of functions and variables, to

minimize a loss function L . The set of functions Ω could be composed of basic algebraic

operators, e.g., addition, subtraction, multiplication, or division. Additionally, a set Φ of relevant

problem features, such as x1, x2, and a set of constants Γ could define the group of variables. A

special concept used in GP literature to represent probability distributions from which constants

can be sampled are ephemeral random constants. For this particular case, we could consider

operator R that samples any real number in R. As a result, the primitive set would be given

by P = {Ω∪Φ∪Γ} = {+,−,×, /,x1,x2,R}. Therefore, the search space F is composed of

mathematical functions that can be expressed using any combination of primitive set elements, while

ensuring arity and variable type constraints. The symbolic regression problem can be expressed by

equation (3.4) [21].

f gp = argmin
f∈F

L (yyy, f (XXX)) (3.4)
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In the context of the customer choice model estimation, XXX denotes a matrix of n historical

data on time slot, customer combinations with dimension n×|Φ|. Vector yyy, with dimension 1×n,

indicates the outcome of such combination, i.e., whether the customer selected the slot or not,

which is a Boolean variable. As any solution approach for optimization problems, GP-GOMEA

evolves better models when the loss function is continuous (reference?). Thus, we defined f to

be a symbolic expression with codomain R, which allows L to be the log-loss function and to

benchmark GP-GOMEA against the GBM. Alternatively, we could have defined f to also output

Boolean variables. In that case, the fitness function would need to be updated by a measure

assessing the degree of dissimilarity between yyy and f (XXX), e.g., the Hamming distance.

To minimize the log-loss, GP-GOMEA needs to evolve models that provide selection probabili-

ties for each combination as close to the actual outcome. Therefore, its codomain should lie within

the [0,1] interval. There are two approaches that could be deployed to achieve this:

1. Let GP-GOMEA learn functions whose output lies within the aforementioned interval;

2. Apply a sigmoid or logistic regression transformation to the models evolved by GP-GOMEA

to ensure that an initial codomain in R is transformed in one in [0,1].

Since learning this constraint using GP would be computationally expensive, we adopted the

second strategy. Therefore, considering f gp to be a model learned through GP-GOMEA, our

symbolic expressions f are given by equation (3.5).

f wt p =
1

1+ exp(− f gp)
(3.5)

With respect to interpretability, applying the sigmoid transformation does not compromise

model interpretability. In fact, through equation (3.5) it is possible to observe that f gp ∝ f wt p.

Therefore, the evolved symbolic expressions will be proportional to the selection probability.

3.3 Cost-To-Serve Model

The clever problem decomposition alluded to in 2.3.6 and detailed in 3.1 also entails obtaining

accurate estimates of the delivery cost for each incoming order, at the moment it is placed. The

minimization of delivery costs, to a certain extent, contributes to the overarching goals of achieving

operational efficiency and maximizing profit. The Cost To Serve (CTS) model is served with the

task of providing the prescribing heuristic with these antecipated delivery cost estimates.

3.3.1 Modeling Approach

In academia, most delivery cost estimation methodologies rely on explicit routing decisions,

through some heuristic approach to the Vehicle Routing Problem With Time Windows (VRPTW).

Alternative approaches include seed-based approximations where the routing costs are subdivided

into two separate components: depot-to-seed and seed-to-customer costs.
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Recent research has presented a third and novel alternative by leveraging Machine Learning

(ML) regression models. It entails engineering a set of regressors xi, that fully describe the state

of the system, and that are then used to predict the response variable - the final delivery cost.

The regression model’s objetive is to estimate feature coefficients β that minimize deviations (e.g.

quadratic error) from the actual values y:

min
β

N

∑
k=1

(
yk−

(
β0 +

I

∑
i=1

βixk
i

))2

(3.6)

Borrowing from this approach, we propose a CTS model that trains on instances that describe

the state of the system at every point in time that an order was placed. The discussion of the features

that provide a complete view of the system is brought along in subsection 3.3.2.

As previously pointed out, demand for each slot-area is indivisible and always fulfilled by the

same depot. Thus, the state of the system is mostly defined within the boundaries of each individual

area. Delivery routes may traverse area boundaries for contiguous areas allocated to the same depot,

but they never include customers placed in areas allocated to different depots.

For modeling purposes, given that demand is indivisible among depots and areas (both cate-

gorical variables) it is expected that categorical variables will play an important role in obtaining

accurate predictions. With a native ability to preprocess categorical variables, even those with high

cardinality that are expected to dominate the outcomes in this use case, the Yandex developed Cat-

boost regression algorithm has demonstrated paramount performance in similar use cases. Thus, the

CTS ML-based approach will rely on a CatBoost instance, subject to hyperparameter optimization

and trained with a randomized cross-fold validation strategy.

3.3.2 Feature Engineering

Recall from 2.3 that customers are associated with unique delivery locations i ∈ C = {1, ...,C}.
The total area of operation of the retailer is subdivided into abstract but permanent boundaries that

constitute depot’s area of influence. Delivery routes are designed only within each of these smaller

spatial areas, from now on referred to as delivery areas a ∈A = {1, ...,A}. As time slot offerings

for a given delivery area contain only time slots with non overlapping service times, we can define

delivery area - time slot combinations (ATCs).

For each of these combinations, we aggregate customer and routing information. A comprehen-

sive list of the regressors is provided in Table 3.4.

Besides contextual information, we aimed to capture the dispersion of the delivery locations

of the orders allocated to each ATC by measuring the relative positioning of the already allocated

customers and the serving depot. Prior knowledge regarding past delivery costs to each customer is

also included. Since larger orders are associated with higher unloading times that tend to drive up

delivery costs, the feature space is also broaden with some shopping basket information.

Each incoming order contributes information towards the final state of the system. Yet, at

any point in the booking horizon prior to the time slot cutoff, the regression model will have
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Table 3.4: Feature set for the CTS model

Feature Feature name Data partition

Average customer haversine dis-
tance

average haversine distance between cus-
tomers already allocated to a ATC

ATC

Customer centroid haversine dis-
tance to depot

haversine distance between the ATC
customer centroid and the fulfilling de-
pot

ATC

Number of customers
number of customers already allocated
to an ATC

ATC

Average customer-depot bearing
the average of all bearings between each
already allocated customer and the serv-
ing depot

ATC

Standard deviation of the
customer-depot bearing

the standard deviation of all bearings be-
tween each already allocated customer
and the serving depot

ATC

Time to service period start
time elapsed between the order times-
tamp and the start of the service period

T

Delivery day of week the service period’s day of week T
Store identifier the store identifier D
Area indentifier the area indentifier A

Number of unique items
the number of unique items in the shop-
ping basket

O

Total number of items
the total number of items in the shop-
ping basket

O

Basket value overall shopping basket value O

Previous delivery cost
delivery cost of the previous delivery to
the same customer

C

Average time stopped
average time spent unloading in previ-
ous deliveries to the same customer

C

Average past delivery cost
the average cost of all previous deliver-
ies to the same customer

C

ATC occupation the atc occupation A
Depot occupation the depot occupation D

Customer’s first order
boolean indicating whether the current
record is the customer’s first order

C
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an incomplete view of the final system. Features like time to service period start help with

contextualizing the gap between the current prediction and the future moment when all routing

information is known.

Finally, ATC occupation and overall depot occupation may provide insight into a stressed or

congested operation.

3.4 Prescriptive Heuristic

The developed prescriptive heuristic is to be applied in a dynamic setting. Therefore, its solutions

will respond to the sequential decision problems arising in each epoch. Thus, to assess the

performance of our solution approach, the whole booking period needs to be simulated. In section

3.4.1 we start by describing the approach taken to perform the simulation. Section 3.4.2 details

the structure used to represent decisions. The fitness function is defined in Section 3.4.3. Finally,

Section 3.4.4 discusses the procedure to generate time slot price panels.

3.4.1 Simulation Configuration

In dynamic problems, the appropriateness of a given solution approach can only be assessed after

simulating the whole decision horizon. Therefore, we modeled the booking horizon dynamics

of the DTSPP as described in Algorithm 1. Before the beginning of the booking horizon, we

define problem entities such as the set of available time slots, ∆, and of incoming customers, C .

Additionally, the weights of each problem objective need to be provided. Let wφ and wω denote

the weights attributed to profit rewards and occupation targets, respectively. Moreover, the set of

parameters of the prescriptive heuristic, Φ, needs to be provided.

Algorithm 1: simulateBookingHorizon
Result: ST
Data: ∆, C , wφ , wω , Φ

1 for tk ∈ T do
2 i←Cnew

k ;
3 Determine ∆i ⊆ ∆, the subset of available time slots for customer i;
4 Load the base price panel fb

k generated by the retailer through its tactical pricing strategy;
5 fk← generatePricePanel

(
fb
k , Φ

)
;

6

7 if rand()≥ walkawayProbability(fk, i) then
8 Selected time slot (w, d) obtained by sampling one element from the pdf Pwd (fk);
9 Sk+1 = Γ(Sk,w,d);

10 else
11 Customer withdraws order;
12 Sk+1 = Sk;

For each time instant tk of a decision epoch k, a customer arrives and the set of available time

slots, ∆i, is determined, as indicated in lines 2 and 3. Determining set ∆i entails not only filtering
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those time slots that were tactically made available to his/her delivery area, as well as those currently

open. A slot is deemed open if the customer arrives after its opening time and before its cutoff,

and if its occupation has not yet reached the capacity. Then, taking as an initial solution the price

panel generated by the retailer’s tactical pricing approach, denoted as fb
k , the pricing heuristic is

applied to refine it, as described in lines 4 and 5. From line 7 to line 12, the slot selection process is

simulated using the customer choice models developed in Section 3.2 and the system state, Sk+1, is

updated accordingly.

3.4.2 Solution Representation

The pricing heuristic is applied in each decision epoch k to perform the corresponding decision

xk. This decision consists of a time slot price panel, denoted as fk = [ fwdk]W×D×1. Therefore, we

represent solutions as a bi-dimensional W ×D matrix as illustrated by Figure 3.5.

fk 1 ... d ... D
1 f11k ... f1dk ... f1Dk

... ... ... ... ... ...

w fw1k ... fwdk ... fwDk

... ... ... ... ... ...

W fW1k ... fWdk ... fWDk

Figure 3.5: Solution representation as a W ×D matrix

3.4.3 Solution Evaluation

In sequential decision problems, estimating the opportunity cost of current decisions is of uttermost

importance. In the context of the DTSPP, even though we are dealing with a stochastic state

transitions, as these are determined by a customer choice behavior model, we want to anticipate the

future impact of letting the customer use one unit of the capacity of each time slot. In practice, this

opportunity cost will represent the potential lost sales of future that was seeking the particular slot

but was unable to due to capacity restrictions. Alternatively, this cost component can also represent

the added transportation cost resulting from the fact that future demand for that slot is placed in

distant locations from the customer.

The expression used to evaluate the fitness of each candidate solution seeks to capture the

opportunity cost component, beyond the immediate reward. Therefore, we consider a so-called

immediate reward φ (fk) that determines the expected profit from applying price panel fk, further

detailed in Section 3.4.3.1. In Section 3.4.3.2, we will introduce another component of the fitness

function that encapsulates the opportunity cost and ensures the solution approach is not greedy and

consumes the capacity of the most attractive slots early on the booking horizon. This component,

the occupation target, ω (fk), measures how will the current price panel bring the system occupation

curves approximate the desired Advanced-Booking Time (ABT) curves. Expression 3.7 presents
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fitness function w, which combines the aforementioned two objectives in a single expression

weighted by their corresponding weight coefficients.

w(fk) = wφ ·φ (fk)+wω ·ω (fk) , wφ , wω ∈ R+
0 (3.7)

3.4.3.1 Immediate Reward

The immediate reward component φ
(
fb
k
)

calculates the expected profit associated with serving

customer i. Using the WTP model described in Section 3.2 to obtain selection probabilities Pwd (fk),

and the CTS model to obtain an anticipated delivery cost-to-serve estimate, cwdk, customer i in time

slot (w, d), the immediate reward can be computed under expression 3.8.

φ (fk) = ∑
w∈∆

∑
d∈D

Pwd (fk) · [bk + fwdk− cwdk] (3.8)

3.4.3.2 Occupation Target

Our approach to model the cost-to-serve uses information on the system state Sk to anticipate the

contribution of the customer i to the final transportation cost. However, this cost estimate does

not provide a complete perspective of the opportunity cost of letting customer i choose a given

time slot. More specifically, it does not quantify the potential future revenue loss of letting go a

customer j with a high basket value, b j due to a lack of capacity to serve them in that same time slot.

Therefore, using solely the immediate reward component may lead to an overly greedy solution

approach that would try to steer customer choices to more profitable scenarios. As a consequence,

the most attractive time slots would close early on the booking period due to capacity constraints as

our heuristic would incentive their choice as they are safe choice to secure the customers basket

value and avoid a withdrawal.

To avoid developing a greedy solution approach, we adopted the concept of Advanced-Booking

Time (ABT) curves from the revenue management literature [22]. In the context of the DTSPP, we

define the ABT curve as a function l∗wd (t) that states the desired occupation level (as a percentage

of slot capacity) at each time instant between the opening and cutoff times of each time slot (w, d).

The ABT curves provide information to steer pricing decisions towards bringing the effective slot

occupation level le
wd (t) closer to the levels defined before the beginning of the booking period.

Figure 3.6 presents a visualization of the mechanism introduced by the ABT curves. In region (a),

the real occupation level of the slot is higher than the ABT. Thus, the prescribing heuristic will

generate higher delivery fees or decrease the average prices for alternative options to discourage

the customer from selecting the slot. In region (b), the opposite effect happens, as the occupation

level needs to keep up with the ABT curve.

Our solution approach needs to guarantee that all slot occupation curves approximate the

defined target ABT curves. In other words, we want to minimize the distance of both curves over

time across all slots. Therefore, the concept of the Mean Absolute Percentage Error (MAPE) can

be adapted from the time-series forecasting literature to provide a distance measure to evaluate the
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Figure 3.6: Illustration of the effect induced by the ABT curves approximation

degree of curve approximation. Since it is desirable to have a measure that is sensible to the prices

generated, we calculate the overall MAPE of the expected occupation resulting from applying a

price panel fk. Equation 3.9 presents the expression for the distance measure used. Focusing on

a particular time slot (w, d) and epoch k, we compute the absolute percentage error in between

the expected occupation caused by decision fk, given by le
wd (tk)+Pwd (fk), and the target level

occupation, l∗wd (tk).

ω (fk) =−
1

W ·D
· ∑

w∈∆

∑
d∈D

|
[
le
wd (tk)+Pwd (fk)

]
− l∗wd (tk) |

l∗wd (tk)
(3.9)

Since the DTSPP deals with a maximization objective, we define the occupation target compo-

nent of the objective function as a negation of the MAPE of the expected occupation.

3.4.4 Probability-Guided Prescriptive Heuristic

Beyond responding to the trade-off imposed by the DTSPP, the solution approach must be efficient

as the available computational budget is reduced. Indeed, in the context of online retailing, after

selecting their shopping basket, the customer should be presented with a time slot offering in

real time, often to a fraction of a second. Thus, we develop a so-called Probability-Guided

Prescriptive Heuristic (PGPH) to perform price adjustments to the initial time slot price panel

computed by the retailer. Briefly, this procedure improves the initial solution by reducing the search

space under two strategies: (1) focusing on the price of the top τ time slots with respect to their

likelihood of selection; and (2) performing a search over sets of discrete price points. The rationale

behind this improvement heuristic consisted in taking advantage of the reduced time budget to
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explore variations in slot options with a reasonable chance of being considered by the customer.

Furthermore, exploring discrete sets of price points offers the decision-maker a more actionable

tool to perform pricing decisions. In fact, he/she can decide the level of granularity of the prices

explored by setting the unit price shift parameter δ . Algorithm 2 describes the procedure used to

perform pricing decisions.

Algorithm 2: generatePricePanel
Result: fk
Data: fb

k , Φ = {n, τ, π−, δ , π+}
13 Compute the selection probabilities for the base price panel fb

k ;
14 Order the available slots (w, d) in descending order of Pwd

(
fb
k
)
;

15 Determine set ∆∗ ⊆ ∆i composed by the top min
(
τ; |fb

k |
)

slots;
16

17 for (w,d) ∈ ∆∗ do
18 Determine Pwd the set of price points that result from applying δ m.u. shifts to base price f b

wdk,
such that π− ≤ fwdk ≤ π+;

19 Generate Fk a set of n price panels by sampling random prices from sets Pwd where each element
f′k respects the following condition:

20 Fk = {f
′
k : f

′
wdk ∈Pwd , ∀ (w, d) ∈ ∆∗ ∨ f b

wdk, ∀ (w, d) /∈ ∆∗} ;

21 fk← argmax
f′k∈Fk

w
(

f
′
k

)
;

The PGPH can be regarded as a local search operator that performs a n-tournament selection

under a neighborhood structure composed of neighbor price panels resulting from the simultaneous

price variations for τ time slots. From lines 13 to 15, the generatePricePanel procedure starts by

applying the WTP model to the base price panel and selects the top τ time slots in terms of the

highest selection probability. Alternatively, if the number of available slots is lower than τ , all

slots are chosen. Then, line 18 determines, for each time slot (w, d), the set Pwd composed of the

discrete price points within the interval [π−;π+]. These price levels are obtained by multiplying

the unit price shift, δ , by k, where k ∈ Z. Finally, from lines 19 to 21, using the feasible price

points for each time slot in ∆∗, the heuristic generates n random price panels and selects the one

that maximizes fitness function w.



30 Solution Approach



Chapter 4

Preliminary Results

This chapter presents the performance of the models described in Chapter 3, as well as explainability

discussions for the Willingness To Pay (WTP) modeling task in particular. The results will be

presented using the same order as the one applied in Chapter 3: Section 4.1 will discuss the WTP

model; afterwards, the Cost To Serve (CTS) model will be explored in Section 4.2; finally, Section

4.3 evaluates the Prescriptive Heuristic. In each section, the data used to train models or the

instances under optimization will be discussed before exploring the achieved results.

4.1 WTP Results

This section intends to analyze the performance and validate the outputs of the trained customer

choice behavior models. First, in Section 4.1.1, we present a description of the data provided

by our retail partner, as well as the assumptions taken to define the scope of the WTP model.

Second, Section 4.1.2 provides performance results for the Gradient Boosting Machine (GBM)

model and, afterwards, in Section 4.1.3, we benchmark it again the symbolic expression generated

by GP-GOMEA. This benchmark entails performance comparisons as well as an analysis of the

comparative interpretability between both methods.

4.1.1 Data

The dataset disclosed by our retail partner contains information pertaining to online orders over the

course of a year, from October 2016 to September 2017. As previously mentioned, since the retailer

only keeps track of confirmed orders and the booked time slot, the time slot price panel presented to

the customer is not known, as well as the information of lost sales due to walkaways. To overcome

the absence of walkaways, we adopted the approach described in Section 3.2.1.2, which provides a

price panel-sensitive walkaway probability estimation model that can be trained to offer an overall

walkaway percentage for the current tactical pricing strategy set by the decision maker, e.g., 5% of

the customers do not confirm their order after selecting the basket value. To obtain the alternative

slots seen by each historical order, we applied a reverse engineering procedure similar to the one

presented by [2]. This procedure consists of first estimating the capacity of each time slot. Then,

31
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the set of historical orders is analyzed, from the most recent one to the oldest, and the capacity of

each slot is deducted each time an order selects it. It is considered that the slot was open while

the available capacity is larger than zero. With this procedure, for each historical order, the set of

alternative slots becomes known. The price at which the time slot was presented is given by the

average price displayed to orders that selected the slot in time instants close to the time at which

the order was placed.

Beyond the application of this two strategies to facilitate modeling customer choice behavior,

we took some assumptions that impact the simulation environment:

In-store pickups Our retail partner offers not only Attended Home Delivery (AHD) services, but

also allows the customer to select a time slot to pick his order at its physical stores. As this

service offering deviates from the scope of the Dynamic Time Slot Pricing Problem (DTSPP),

since it does not require routing optimization, we discarded data for orders asking for such a

service and we do not consider them in our simulation.

Free-shipping service For a fixed monthly price, the retailer lets customers order without a

delivery fee. Similarly to in-store pickups, we also disregard these customers due to the fact

that there are no pricing decisions involved when it comes to addressing them, as they can

book any time slot free of charge.

Slot visibility The retailer offers a set of time slots up to 60 days into the future. Since more

than 98% of the orders booked a time slot within 7 days into the future, we limit the set of

alternative slots based on that time frame.

4.1.2 Performance Discussion

This section analyzes the performance of the two alternative WTP models developed. We start by

presenting the results for the black-box machine learning model and the GP-GOMEA-generated

symbolic expression separately in Sections 4.1.2.1 and 4.1.2.2. Then, we benchmark the two

models in terms of their applicability to model the WTP in Section 4.1.2.3.

4.1.2.1 Black-box model

The process of obtaining a black-box ML model capable of providing accurate selection probabilities

for each (customer, slot) consisted of, first, performing a grid search among distinct models and

hyper-parameters and, then, evaluating its applicability to capture the competition effect of offering

a set of time slots. This section focuses on the grid search and model choice, since applicability

discussions will be handled in Section 4.1.2.3.

The model choice process can be divided into two distinct phases: (1) selection of the ML

model and (2), for this model, find the set of hyper-parameters that minimize the estimation error.

During Phase (1), we tested the following ML algorithms:
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Random Forest (RF) An ensemble of decision trees (DT) individually modeling their respective

partition of the training data. The output of the model consists of the aggregate result of each

DT after a voting mechanism.

Gradient Boosting Machine (GBM) A RF where the training of each DT is performed sequen-

tially with a specific learning rate. The rationale behind this algorithm is to refine the training

of subsequent estimators.

Logistic Regression (LR) Similar to the approach taken with GP-GOMEA. Instead, here model

form is not learned and is rather assumed to be a linear function in the dataset features.

Neural Network (NN) The epitome of a black-box ML model. A NN consists of layers of nodes

interconnected by edges. Nodes receive real numbers as inputs and apply non-linear functions

to transform them into outputs that can be directed to subsequent nodes.

The grid search evidenced that GBMs outperformed the remaining models in terms of log-loss

regardless of the chosen hyper-parameters. Ultimately, after refining model hyper-parameters, the

GBM was capable of presenting a cross-validated log-loss of 0.135.

4.1.2.2 Symbolic expression

Using GP-GOMEA to derive symbolic expressions capable of modeling the WTP involved several

iterations and study of different algorithm and instance configurations. Before delving into the

results obtained, in Table 4.1 we present the parameters studied and their respective values.

Table 4.1: Parameters used to train symbolic expressions using GP-GOMEA

Parameter Description Values

Instance

N number of training observations 1176, 3529, 5881

Solution space

Ω set of functions
{+,−,×, aq}, {+,−,×, aq, exp, lnp},
{+,−,×, aq, exp, lnp,

√
, 2}

Φ set of features small (|Φ|= 11), large (|Φ|= 26)

Algorithm

M population size 1000, 2000

(hmax
i , hmax)

maximum tree heights for the initial population
(3, 5), (5, 10), (5, 15)

generation and throughout the algorithm, respectively

pc crossover probability 0.4, 0.5, 0.6, 0.8

pm mutation probability 0.2, 0.4, 0.5, 0.6

pr reproduction probability 0.0, 0.1, 0.2, 0.4

IMS application of the Interleaved Multistart Scheme True, False

As evidenced in Table 4.1, the size of the training data sets provided to GP-GOMEA was

reduced. This strategy was employed due to the fact that GP is a very time consuming algorithm,
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which does not allow to train algorithms using data sets with comparable size to those provided

to black-box models. In terms of functions, we chose numerical operators exclusively. All of

them keep their mathematical properties, except for functions aq and lnp, which possess distinct

definitions to handle domain restrictions. Operator aq consists of the analytic quotient, a function

commonly used in symbolic regression problems to represent the mathematical division. Since a

function f (x) = 1
x does not allow x to be null, the analytic quotient protects the division operation

by performing the computation described by Expression (4.1). Regarding the protected function

lnp, its output consists of either the natural logarithm of a number x if x > 0, or 0 if x≤ 0.

aq(a, b) =
a√

1+b2
(4.1)

In terms of the configuration of GP-GOMEA, all parameters and their definition are consistent

with the standard GP algorithm introduced by [11], except for IMS. IMS consists of the Interleaved

Multistart Scheme, a procedure that eliminates the need for tuning parameters by running the

algorithm with different settings throughout the evolution. Briefly, at every g generations of a run,

GP-GOMEA initiates another run with double the population size. At the same time, every 2 runs,

the maximum tree height is increased by 1. Throughout the execution of the algorithm, runs are

progressively terminated due to several stopping criteria, e.g., the entire population converges to an

identical solution, or a new run R′ with a bigger population size achieved a better fitness than the

analyzed run R or another run R′′ with a population size bigger than R.

From our initial experiments, using IMS leads to better results. Therefore, in Table 4.2 we

present the obtained performance and complexity of models obtained with parameter combi-

nations selected from those in Table 4.1, IMS = True and computational time limit of 1h. In-

stead of presenting a drill-down of the results for all parameter combinations, we only display

(|Ω|, |Φ|, M, (hmax
i , hmax)) combinations for the sake of brevity and to expose the most relevant

results. Column size is a measure of model complexity that counts the number of characters present

in the symbolic expression. Performance measures log-losstrain, log-losstest and log-losstest
bal refer

to the log-loss error for the training dataset, the test dataset (identical for all trained models) and

the test dataset with class imbalance corrected through down-sampling. The log-loss error metric

is only comparable between data sets with the same proportion of positive samples. Therefore,

to evaluate the performance decay from the training to the test settings, we present %∆train
test . This

metric provides the percentual variation between log-losstrain and log-losstest
bal , both presenting a

balanced class proportion.

From Table 4.2, it is possible to observe that, for the same (|Ω|, |Φ|, M) combination, increase

the maximum admissible tree height increases model size, i.e., complexity, but leads to lower

log-losstrain values, i.e., better fitted models to the training data. In terms of the population size M,

from the obtained results, it is not possible to say that increasing the population size automatically

leads to better models. Having a larger population size is beneficial to ensure diversification by

allowing the appearance of several individuals being more proficient in modeling specific patterns

on the data, which can later be recombined by genetic operators. However, increasing population
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Table 4.2: Performance of GP-GOMEA for modeling the WTP

|Ω| |Φ| M (hmax
i , hmax) size log-losstrain log-losstest log-losstest

bal %∆train
test

4

12 1000 (5,10) 142 0.352 0.352 0.474 34.7%
(5,15) 207 0.343 0.416 0.448 30.6%

2000 (3,5) 49 0.406 0.327 0.578 42.4%

27
1000 (3,5) 53 0.403 0.447 0.459 13.9%

(5,10) 196 0.327 0.342 0.493 50.6%

2000 (3,5) 57 0.388 0.406 0.515 32.7%
(5,10) 171 0.362 0.371 0.502 38.7%

6

12

1000
(3,5) 43 0.461 0.492 0.553 20.0%

(5,10) 167 0.345 0.348 0.498 44.7%
(5,15) 164 0.321 0.340 0.506 57.3%

2000
(3,5) 48 0.403 0.406 0.461 14.4%

(5,10) 129 0.416 0.399 0.552 32.6%
(5,15) 183 0.316 0.368 0.505 59.8%

27

1000
(3,5) 54 0.386 0.380 0.539 39.7%

(5,10) 137 0.369 0.406 0.474 28.5%
(5,15) 165 0.327 0.361 0.491 50.2%

2000
(3,5) 55 0.386 0.397 0.488 26.4%

(5,10) 153 0.317 0.377 0.515 62.6%
(5,15) 146 0.320 0.352 0.494 54.1%

8
12

1000 (3,5) 49 0.408 0.288 0.592 45.1%
(5,10) 195 0.321 0.344 0.474 47.7%

2000
(3,5) 49 0.451 0.563 0.546 21.2%

(5,10) 151 0.328 0.334 0.509 55.4%
(5,15) 143 0.382 0.407 0.536 40.3%

27 1000 (5,10) 169 0.340 0.372 0.490 44.1%

2000 (5,10) 134 0.366 0.404 0.494 34.9%

size leads to higher computation effort to handle the genetic operations and the assessment of the

fitness of the whole population. Since we trained all our models with a time limit of 1h, runs

having M = 2000 might have resulted in a lower total number of generation, leading to under-fitted

symbolic expressions. Regarding parameters |Ω| and |Φ|, our results do not display an apparent

trend regarding their impact on model performance and complexity.

Comparing the training phase and the testing phase, it is possible to observe that there is a

significant performance decay, as evidenced by the positive values of %∆train
test . This result may

be caused by two factors: (1) the reduced number of training instances used and (2) the tight

computational budget used to train the models. These two factors combined may have lead to

under-fitted models incapable of accurately modeling the WTP problem.

The selected model was the one which minimized the log-losstest . This model presented a

log-losstest of 0.288 and was obtained by running GP-GOMEA with the combination (|Ω|, |Φ|,
M, (hmax

i , hmax), pc, pm, pr) = (8, 12, 1000, (3, 5), 0.4, 0.4, 0.2). Figure 4.1 presents a tree
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representation of the derived symbolic expression.

Figure 4.1: Symbolic expression chosen to be deployed in the simulation

From the observation of the expression of f gp it is possible to understand some of the behavior

of this model. Focusing on the sub-tree that forms expression (exact_selection_customer_perc ×
max_cost) - aq(slot_start, −7645), one can conclude that the historical percentage of customer

selection of a given slot is proportional to the selection probability. Additionally, we see that time

slots starting earlier tend to be preferred, as slot_start impacts negatively f gp. Focusing on sub-tree

(q1_cost × rank_cost) × aq(median_cost, slotcost), it is possible to observe the price of a time

slot is inversely proportional to its selection probability.

4.1.2.3 Model comparison

From the results presented in Sections 4.1.2.1 and 4.1.2.2, it is already possible to determine that

the GP-GOMEA-derived symbolic expressions are incapable of competing with the GBM for the

WTP prediction problem. Comparing the performance of both methods on the same testing dataset,

the performance discrepancy is very accentuated, with the GBM presenting a log-loss of 0.095,

whereas the symbolic expression is only capable of achieving a value of 0.277.

It is true that GP-GOMEA falls behind the GBM for this classification problem. However,

for the purpose of solving the DTSPP, these WTP models should be capable of estimating the

customer choice probability distribution function and of separating the most preferred time slot

from the remaining set of options. To identify if the models were accomplishing this goal, we built

the graph presented in Figure 4.2. This graph is obtained by applying the WTP models for each

historical order and sorting in a descending order the obtained selection probabilities. Afterwards,

the percentage of orders where the selected slot fell inside the top n most preferred slots was

obtained.

From Figure 4.2, it is possible to see that the GBM and GP-GOMEA are capable of guessing the

correct time slot in 29% and 24% of the orders, respectively. This result might seem unsatisfactory,

but knowing that each order is presented with several time slots, the task of identifying the option

that the customer will select is extremely demanding. To demonstrate the usefulness of the

developed WTP models, we can compare this same result for a naïve model that assumes that each
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Figure 4.2: Percentage of cases where the chosen time slot belonged to the top n most likely options

customer will select the same time slot as the one chosen in the previous order. Applied to the same

test dataset, this model is only capable of correctly guessing the chosen time slot in 17% of the

cases. Additionally, by looking at the 5 most preferred options as considered by the models, it is

possible to see that in 72% and 61% of the cases for the GBM and GP-GOMEA, respectively, will

contain the selected time slot, which is a very satisfactory result.

4.1.3 Explainability Discussion

The goal of this section is to explore the explainability of both models individually and to analyze

if their behavior is congruent. Additionally, since price is a key component of the DTSPP, we

perform a sensitivity analysis to this factor in order to ensure trust on the outputted predictions.

Deriving a symbolic model through GP consists of an explainable-by-design approach. Through

solution space constraints, e.g., limiting the tree height of individuals, or solving a multi-objective

problem considering the minimization of error estimates and model complexity, GP can offer

analytic expressions that can provide explanations at a model-level. In fact, Section 4.1.2.2 has

already delved into such explanations by exploring the effect of features such as the historical

customer slot choice percentage, the starting time of a slot and its price, on the probability of

selection. The symbolic expression in Figure 4.1 is rather interpretable, apart from the features

pertaining to the pricing distribution of the presented slot panel. Indeed, upon varying values

of slotcost, the remaining price features max_cost, q1_cost, rank_cost and median_cost could

potentially vary as well, which impedes performing an univariate analysis of the effect of each

feature.

In terms of the BBM model, explainability is treated as two-step process. After learning

the GBM, model explanators are obtained to interpret its output. Figure 4.3 presents the SHAP

summary plot with the 4 most important features. For each feature, the graph plots feature values in

terms of their impact on the selection probability. Moreover, each plotted point presents a color in

accordance to the specified color grading, i.e., higher feature values lean towards the purple color

while lower feature values tend to the blue color.
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Figure 4.3: SHAP summary plot for the trained GBM model

Interestingly, the 4 most important features for the GBM coincide with the features selected

by GP-GOMEA to build the regression tree. The only difference lies on slot_end, as the sym-

bolic expression contains the feature slot_start. However, these two features are highly correlated

as slot_end can obtained by adding the slot width to the slot_start, and vice-versa. Further-

more, the GBM learned the same effect as the one modeled by the symbolic expression for the

considered features on the selection probability. Indeed, higher values of slotcost and slot_end

(hence, slot_start) reduce the selection probability. Conversely, higher values of rank_cost and

exact_selection_customer_probability lead to higher selection probabilities.

Even though the developed models are price sensitive, we need to assess if the effect of price

shifts leads to intuitive model behavior. In other words, not only does the slot selection need to

increase (decrease) upon price discounts (mark ups), but also the overall selection probabilities of

the remaining time slots should vary accordingly, i.e., their average selection probability should

decrease (increase). To assess this phenomenon, we present Figure 4.4 that presents the percentage

of cases where the behavior displayed by the model corresponded to what was expected for different

degrees of price shifts ranging from −0.5 to 0.5. The upper graph presents the percentage of cases

where the selection probability of time slot (w,d) increased and decreased for negative and positive

price shifts, respectively. Conversely, the lower graph presents evaluates the cases where the average

selection probability of the remaining unaffected time slots increased upon price increases for time

slot (w,d), and vice-versa.

Surprisingly, GP-GOMEA beats the GBM machine for every price shift point while modeling

the selection probability of the affected time slot. Indeed, the symbolic expression is capable of

displaying the correct behavior in every single case. Moreover, we see that the GBM reacts better

to time slot price markdowns. For the unaffected slots, GP-GOMEA is also better at understanding

that the their average selection probability should increase upon discounts on the affected time slot.

Nevertheless, for price mark-ups, both methods compete in trying to indicate that the attractiveness

of the remaining slots should increase. However, for a price shift of +0.5 m.u., the GBM reacts

better.
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Figure 4.4: Price sensitivity analysis comparison for the GBM and the symbolic expression
generated through GP-GOMEA

4.2 CTS Results

This section delves into the performance of the method developed to anticipate potential routing

costs. First, Section 4.2.1 will expose the dataset used to train the models. Then, Section 4.2.2 will

analyze the performance of the CatBoost regressor in handling the CTS predictive problem.

4.2.1 Transportation Data

In the context of its AHD, the retailer relies on third-party logistics service providers (3PLs) to ship

the orders. Since both the WTP and CTS models will be deployed in the prescriptive heuristic, the

retailer provided routing data pertaining to the same period as the one analyzed for the WTP, from

October 2016 to September 2017. Among the 3PLs, we received data from the two main partners.

Therefore, we initially had to carry out some data cleaning and standardization procedures to make

sure that information from two distinct sources was consolidated.

After having gathered all data, we cleaned routes where at least one order was canceled, as we

only consider that a customer can walkaway during the slot selection process. Moreover, since we

are relying on operational data filled by truck drivers, some information was incongruous. Indeed,

we had to exclude orders where the time of arrival at each point was not registered, whose route

included duplicated orders, or even where the waiting time at a given stage was negative.

Even though the dataset presented several inconsistencies, we decided to derive an approach

based on them. We took this decision because we do not wish to provide the retail partner with a

routing solution approach to solve the Vehicle Routing Problem With Time Windows (VRPTW).

The most appropriate procedure would be to apply a VRPTW solution approach to historical orders

and consider the originated routes as ground truth for the ML problem that tries to predict the final

transportation cost for each incoming order. However, such a strategy would entail the retailer

building its routes using the same solution approach. Assuming that the routing method used by

the retailer matches the performance of the VRPTW solution approach, even in that case, such a
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method would not capture unpredicted events that may occur in this operation, e.g., canceled orders

or customers absent from home.

4.2.2 Performance Discussion

The application of the CatBoost regressor on the described CTS prediction problem fell short

of expectations. Even though the mean absolute error (MAE) was only 0.73 m.u., the R square

metric was 0.251. In other words, our CTS model explains around a quarter of the variability

in the testing dataset. Figure 4.5 plots the transportation cost distributions for real data and the

predictions made by our model. As can be observed, although our model incurs on a low bias, it is

very conservative. Indeed, it produces predictions mainly centered at the second and third quartiles

of the real transportation cost distribution.

Figure 4.5: Comparison of real and predicted transportation cost distributions

Despite its poor performance, the CTS model displays a relatively stable MAE throughout

time. Figure 4.6 presents the evolution of the MAE as the prediction is made progressively more

distantly from the time slot cutoff. As expected the error increases slightly as the distance to the

cutoff increases, since less information on the final state of the system is known by then.

4.3 PH Results

This section unveils the results achieved by our solution approach on a test instance obtained by

isolating a set of contiguous orders from the historical records kept by the retailer. Section 4.3.1

delves into the assumptions taken to create the test instance. Afterward, Section 4.3.2 performs a

sensitivity analysis on objective function weights to compare profit- and efficiency-driven pricing
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Figure 4.6: Evolution of the MAE throughout time

policies. Additionally, we contrast the performance of static pricing strategies against the proposed

dynamic pricing policy.

4.3.1 Instance

The DTSPP presents a feature that simplifies not only the derivation of a solution approach but also

the obtention of a testing instance: demand is indivisible, i.e., a customer can only be served by a

single store. So, we started by selecting the store with the highest number of past orders. Among

all areas served by this store, we chose two contiguous delivery areas to account for cases where

vehicles perform routes that address customers in different regions. Having defined the geographical

scope of the test, we proceeded to selected a sequence of C = 1300 past orders that occurred in

the middle of the provided data set, between late March and early April of 2016. Considering the

inter-arrival intervals, this sequence of orders corresponds to a booking horizon of 4 days. The set

of time slots (∆,D) consists of a union of the time slots seen by every simulated customer i ∈ C .

Furthermore, we filtered the set of time slots based on the assumptions mentioned in Section 4.1.1.

Regarding time slot features, it is necessary to define their initial occupation and capacity in

number of orders. We set the initial occupation of each slot to be the respective number of booked

orders since their opening time until the simulation start time. We sized time slot capacity according

to the number of expected orders in the simulation divided by the average number of time slots in

a price panel for each delivery area. To avoid having a constricted instance in terms of capacity,

we added a buffer of 5% of the computed capacity. Additionally, we considered that a time slot is

available while its occupation has not reached capacity during the period ranging from 7 days to 4

hours prior its earliest time, awd .

Finally, we set the Advanced-Booking Time (ABT) curves to be a linear function that links the

initial occupation at its opening time to its capacity at cutoff.
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4.3.2 Performance Discussion

To assess the performance of our solution approach, we deployed it using the parameters listed in

Table 4.3. Additionally, we defined several ratios of objective function weights rw = wω

wφ
to perform

a sensitivity analysis. Analyzing the simulation outcome upon varying objective function weights

enables identifying whether the solution approach offers consistent results when the target shifts

from profit to efficiency.

Table 4.3: Solution approach parameters used in the simulation

Number of candidate solutions and affected time slots

n 1000 τ 0.25×|(∆, D)k=0 |

Price parameters

δ 0.5 (π−, π+) (2, 9)

Objective trade-off

rw {0.01, 1, 100, 1000, 2000, 5000}

Section 4.3.2.1 presents the sensitivity analysis to the ratio wω

wφ
, while Section 4.3.2.2 compares

the dynamic pricing strategy against the retailer’s current static pricing policy.

4.3.2.1 Sensitivity Analysis

Considering lower values of rw, i.e., profit-oriented decisions, might lead to a strategy that to

customer preferences. Thus, it is likely that the most popular slots will close early. Additionally,

customer walkouts will reduce. The profit associated with each customer consists of the balance

between the revenue captured by the basket value and slot price subtracted by the delivery cost.

Therefore, the prescribing heuristic will tend to drive prices upwards to try to capture the customer’s

willingness to pay while at the same time not leading to a walkout which enables securing the

basket value.

To confirm this hypothesis, we ran 24 simulations for each of the specified rw values, as the

heuristic and customer selections are random. Figure 4.7 compares the evolution of the walkaway

ratio and early slot closures for decreasing levels of rw. The metric early closure corresponds to the

sum of the total time each slot was closed before its cutoff in days.

As rw increases, the focus of the prescribing heuristic shifts from guaranteeing a balanced slot

occupation and becomes concerned in extracting as much revenue from each customer possible.

Therefore, the percentage of customer that walks out decreases, as the price offers are no longer

trying to push customer selections to underused time slots, and are focused on offering the best

price possible for the time slots that the customer values the most. In contrast, the total time of early

slot closures increases, as the most popular time slots close long before their cutoff. When slot

occupation targets are valued the most, it is possible to observe that this metric is better controlled.
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Figure 4.7: Impact of objective function weights on the percentage of walkaways and slot availability

The DTSPP is a very comprehensive problem involving a customer service component, as well

as a delivery efficiency point-of-view. Therefore, beyond the aforementioned KPIs, several others

could be monitored. In Table 4.4, we present the impact on profit, given as a percentage of the

maximum profit obtained using rw = 0.01. Additionally, we provide the average price at which

time slots are selected, as well as the average price of the presented price panels to the customers.

Finally, we also disclose the average number of slots the customer has available for selection.

Table 4.4: Impact of trading-off profit and slot occupation balancing on relevant business KPIs

r_w 5000 2000 1000 100 1 0.01

Profit (%) 99.18 99.47 99.63 99.93 99.96 100.00

Selection price (m.u.) 5.90 5.90 5.90 6.01 6.20 6.26

Panel average price (m.u.) 6.31 6.30 6.30 6.34 6.36 6.36

Available slots (units) 27.81 27.86 27.72 27.52 27.56 27.42

Naturally, as rw decreases, profit gains become more important for the pricing heuristic, which

leads to economical improvement. By observing the average selection price, we can assess the

usefulness of our WTP model. By focusing on profit rewards, our prescribing heuristic attends to

customer preferences. Instead of offering discounts to secure the purchase of a customer, using

the WTP model, the prescribing heuristic is capable of estimating the willingness to pay of each

customer and of actually increase the price at which customers select time slots.

Interestingly, even though we did not model such a restriction, throughout the several values

of rw, the average price of the successive time slot panels presented to customers were relatively

stable. From a business perspective, this is a desirable phenomenon, as the retailer might not want

to change drastically the level of prices presented to customers, as it might change their perception
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of the value of time slots. Finally, since rewarding profit disregards time slot load balancing, early

closures become more frequent which also reduce the number of alternative time slot options

displayed to the customer.

4.3.2.2 Effect of Dynamic Pricing

Currently, the retailer has no concern with ensuring a balanced occupation of the offered time slots.

Indeed, its tactical time slot management process consists of adjusting the capacity of time slots

according to historical customer preferences. Therefore, we compare its current time slot pricing

strategy against a dynamic pricing profit maximizing scenario, i.e., rw = 0.01. Table 4.5 compares

both strategies along the KPIs analyzed so far. The only addition is the load balancing measure,

which determines the percentage of slots that hit 95% of the planned capacity.

Table 4.5: Impact of adopting a dynamic time slot pricing strategy on relevant business KPIs

KPI units Static Pricing Dynamic Pricing Impact

Profit
% of baseline

100.0 103.8 3.8
profit

Selection price m.u. 6.26 6.26 0.00

Walkaways % 4.20 0.45 -3.75

Slot
number of slots 28.2 27.4 -2.8%

availability

Load % of slots hitting
31.77 44.79 13.02

balancing 95% capacity

From Table 4.5, it is possible to observe that the dynamic pricing strategy was capable of

increasing the operational profit by 3.8 percentage points (p.p.). This result was achieved not

because of an increase in the average selection price, but due to a reduction on customer walkaways

by 3.75 p.p.. Additionally, even with a greedy dynamic pricing strategy, time slot occupation

improved as almost half of the time slots achieved 95% of their capacity. This result represents

an improvement of 13.08 p.p. over the static strategy. Finally, due to the reduction in customer

walkaways and a better occupation of time slots, the number of slots presented to the customer

reduced by 2.8%.

4.4 Practitioners’ Validation

The initiatives taken to validate the present models can be grouped into three validation phases:

(1) problem framing, (2) model development, and (3) business results, which are discussed in this

section.
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4.4.1 Problem Framing Validation

The initial interactions with Sónia Germano, Operations Manager for E-commerce Transportation at

Sonae MC at the time, augmented our perception of the challenges involved in time slot management

and of our retail partner’s approaches. These interactions helped define the scope of the problem

and establish useful assumptions, e.g., each customer location is addressed exclusively by one

store. This previous fact enables assuming there is indivisible demand and validates that time slot

management can be performed at each store separately.

Regarding the validation of explainability requirements, we conducted an interview with

Sónia Germano to obtain information to guide the user study designed by the University of Tartu,

reported on D2.1 ‘User studies on the realisation of explanations’ (for the complete interview

transcription, refer to Appendix 6 of the same deliverable). From the perspective of the interviewed

operations manager, explainability through directly presenting the mathematical expression would

not be preferable. Therefore, further explanations that can run on top of the models (such as

counterfactuals) are necessary to interact with this person. This does not preclude the need for

symbolic expressions, as explainability by design is still important to the model developer.

4.4.2 Model Development Validation

The developed symbolic expression to model customer behavior yielded satisfactory results with

respect to explainability. In fact, the expression includes an anticipated price sensitivity relationship

where the slot selection probability decreases for increasing prices. Another interesting finding is

that the percentage of past slot selections deems the likelihood of the customer’s current selection.

Furthermore, the customer has a higher preference for time slots closer to the moment of ordering,

as slot_start increases affect negatively the selection probability. The latter fact is aligned with the

study conducted by [2], which indicates that customer value delivery speed.

In terms of the prescription of time slot prices, the validity of the results of our prescriptive

heuristic was proved by our sensitivity analysis. As reported in Section 4.3, the impact on opera-

tional profit and customer walkaways when the relative importance of the profit and operational

efficiency objectives changes is intuitive. Indeed, in a scenario where the retailer substantially

prefers the efficiency objective over profit, customer walkaways increase as price offerings will be

adjusted to discourage the selection from customers whose delivery incurs a high transportation

cost. Alternatively shifting the focus to profit maximization, customer walkaways decrease as price

offerings will set prices that grant a customer selection and, as a consequence, the associated basket

value.

4.4.3 Business Results Validation

After obtaining the complete solution approach for the DTSPP, we scheduled a meeting with Fábio

Santos, current Operations Manager at Sonae MC. During the meeting, we had the opportunity to

explain our methodology and disclose our model validation analysis. The operations manager’s

perception was aligned with the development team in what concerns model intuitiveness. Moreover,
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the decision-maker deemed this solution approach as relevant, since it can be used as a test tube to

explore time slot pricing policies.



Chapter 5

Conclusions and Future Developments

In this chapter, we derive the main conclusions and point possible research directions to be explored

in the following iterations of this use case.

5.1 Final considerations

This research project has now achieved important milestones regarding the objectives of the

considered online retail use case. We implemented a first version of a prescriptive heuristic that is

capable of prescribing time slot price panels, while maximizing profit and following Advanced-

Booking Time (ABT) curves. This heuristic is composed of two predictive models (Willingness

To Pay (WTP) and Cost To Serve (CTS)) and a price panel generation procedure. Explainability

methods were applied to the WTP predictive problem. Furthermore, to evaluate the performance of

the prescriptive heuristic in solving Dynamic Time Slot Pricing Problems (DTSPPs), a simulator of

booking horizons was implemented. At this point, each component is at a different state of maturity

regarding performance and explainability metrics.

The WTP predictive problem was solved by two alternative approaches, Genetic Programming

(GP) and Gradient Boosting Machine (GBM). Both approaches consider real-word data such as

the previous slot selections, pricing dispersion measures, and the current shopping basket of the

customer. The output of a GP algorithm is a symbolic expression that is considered to be a white-

box model. The output of the GBM approach is seen as black-box model that needs to be explained

using SHAP. In terms of raw predictive power, we observed that the obtained GP expressions are

not yet able to compete with the GBM model. Nonetheless, the GP results suggest that symbolic

expressions can make bolder predictions for positive samples. Additionally, it was possible to verify

that larger tree heights result in better models, but we believe GP models are under-fitted due to the

hardness of the optimization problem that needs to be solved. It is clear that GP cannot be used in a

“plug-and-play” fashion and that ad-hoc explainability comes at a cost. Therefore further work is

needed on tweaking terminals, operators, and objective functions considered in the evolutionary

process. Regarding the post-hoc explanations obtained for the GBM model, it was possible to

verify that the GBM model is price sensitive and to understand the features with highest impact on

47
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time slot choices. For instance, the slot price has a high negative impact on the probability to select

a certain time slot. Note that SHAP showed to be a valuable method to provide local explainability.

The CTS predictive problem was approached using a regression model that works states of the

transportation system. These states, which are described by a number of transportation-related

features such as customer dispersion, time slots occupation, and remaining time before the booking

period cut-off, are used to predict the delivery cost of each order. Note that this delivery cost

prediction is also part of the necessary inputs for the time slot pricing heuristic. The results of the

CTS model suggest that predicting delivery costs with an incomplete view of incoming customers

several days before the delivery date is very challenging. Although the model shows very low

bias, it predicts conservative delivery costs with a low explained cost variance. Further work will

be necessary to improve two aspects of this approach. First, the dataset needs to be improved,

as the operational data regarding deliveries is scarce and shows some incongruities. Second, we

believe that a approach to the problem could improve the current results. For instance, besides a

GP approach, advanced reinforcement learning approaches could be tried. Furthermore, different

decomposition approaches can also be tried, dividing the transportation cost into three components:

waiting time, traveling time, traveling distance.

Finally, we were able to propose a first attempt at solving the DTSPP by means of a prescriptive

heuristic that selects a set of time slot prices, a price panel, to be shown to each customer. The

heuristic receives WTP and CTS approximations and generates price panels through a predefined

procedure. The price panel to be shown among all generated price panels is selected in a greedy

randomized fashion, considering a subset of price panels characterized by larger expected profits.

A sensitivity analysis, performed to weight parameters figuring in the objective function, allowed

to provide evidence that the heuristic is behaving as expected. On one hand, when the objective

function is focuses on profit, fewer walk-ways occur, as the basket value is the main contributor

to profit. On the other hand, when the focus is on slot load balancing, early slot closures are

minimized, ensuring that the customers have a wider range of options through the booking horizon.

We observe that the propose prescriptive heuristic is able to pursue the desired time slot occupation,

modeled by means of ABT curves. Therefore, from a practical perspective, operations managers

are able to control the logistic capacity demand by a certain booking horizon and, at the same time,

they are able to balance profit and service level.

5.2 Future developments

Despite the valuable contributions achieved so far in the online retail use case, there are a few

improvements and developments we expect to introduce in the near future.

Improve WTP explainable model – The WTP explainable model developed in Section 3.2 is one

of our first attempts at building explainable models. Therefore, we are confident that

improvements can be introduced both in terms of performance and explainability metrics.

To improve performance, new terminals and operators need to be tested, so as to capture



5.2 Future developments 49

the main drivers of the WTP of each customer. To improve explainability of the symbolic

expressions, new constraints and objective function penalty components should be explored.

Note that due to the computational complexity that is inherent to most GP frameworks, the

referred experiments require a considerable amount of computational resources (such as

RAM and CPU). Therefore, the exploration of different hyper-parameter combinations needs

to be meticulously planned and efficiently implemented.

Propose CTS explainable model – The CTS model presented in Section 3.3 is not explainable.

Hence, in the following developments of this use case, we intend to develop an explainable

CTS model that is able to predict the cost to serve a customer during the service period

in an explainable manner. Given the complexity of the final prescriptive approach, it is

of utmost importance to maintain the explainable character of each of its components.

Note that the complex process of exploring transportation related features to improve the

performance and explainability of these models is also expected to require extensive of

computational experiments. Nonetheless, developing efficient and explainable algorithms

to provide transportation cost approximations can result in widely applicable models, given

that there are numerous sequential decision problems which incorporate transportation

components.

Develop pricing policy recommendation algorithm – Our first approach to the DTSPP, presented

in Section 3.4, is a prescriptive heuristic demanding a considerable set of parameters. This

heuristic is based on the generation of a set of time slot pricing panels, which are classified

according to the profit their are expected to generate in case they are shown to a certain

customer. At the moment, the selection of the best price panel to be shown is performed by a

greedy-randomized procedure, which chooses a random panel among the 5 best in terms of

expected profit. In fact, there is no real pricing policy being extracted, that is, we already

implemented a pricing policy. However, we intend to implement a GP algorithm running

over the simulator of the booking horizon, in order to extract a policy to choose the best time

slot pricing panels to maximize the expected profit including immediate and future rewards.

The idea is to find a policy (a symbolic expression) that runs fast and that is explainable. In

this case, explainability should allow the user to understand what are the best panels to be

shown for certain WTP profiles that have to be served with a certain CTS.

Comparisons with other sequential decision problem approaches – We aim at providing exten-

sive computational experiments to compare the developed approach against different policies

and against different policy extracting methods. For instance, given that artificial neural

networks is a typical approach to extract policies (i.e., the neural network parameters), it

is important to compare them against our explainable approaches. Additionally, it would

be interesting to compare symbolic model-based policies against policies that are obtained

using approximate dynamic programming approaches to solve the Bellman equation [5].

In this type of approach, policies are extracted after attributing a value to each state that

can be visited by the system. These state-value and action-quality-based policies have been
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successful in transportation-related applications in the past, thus their consideration should

not be overlooked.

TRUST framework functionalities – Finally, it would be interesting to improve TRUST frame-

work so that it further helps the development of explainable approaches to solve problems

that are similar to the DTSPPs. At the current state of this online retail use case, we believe it

would be interesting to implement two main new functionalities. First, the TRUST framework

should allow users to perform several training iterations where there is the possibility to

incorporate aspects that were learned in a previous training session. For instance, it would

be interesting to combine some features to create a new feature to figure in a future training

session. Second, given that the current approach for this use case is using three different

models, developing a model pipeline builder would be useful. That way, it would be possible

to integrate the WTP, CTS, and prescribing heuristic in a single loop.

5.3 Recommendations for TRUST-AI Framework

Our symbolic expression for the WTP prediction problem was derived using GP-GOMEA, one of

the genetic programming algorithms contemplated in the framework’s toolkit. From our experience,

the framework should allow interrupting the algorithm’s evolution to inspect and refine specific

symbolic expressions in the population. In the resulting WTP model derived through genetic

programming, represented in Figure 4.1, the feature slot_start is being divided by−7645. Through

the analysis of the feature distribution, it was possible to determine that this value is close to the

mean slot_start for the training dataset. Thus, instead of using an ephemeral random constant as a

terminal, a new variable could be added to the genetic programming optimization problem with the

mean slot_start. Alternatively, we could remove the ephemeral random constant and normalize the

feature using its mean value.

Our experience with solving the DTSPP leads us to claim that the framework should be

capable of simulating different individuals under different scenarios to assess their performance.

In the context of predictive problems, e.g., the CTS prediction problem, being able to assess the

performance of the trained model with different datasets or relevant segments of a dataset would

be desirable. Indeed, it would allow inspecting model behavior, such as assessing whether cost

predictions are worse when made earlier in the booking horizon. For prescriptive settings, changing

the conditions of the simulation would be ideal. In our case, it would enable performing the same

sensitivity analysis as the one described in the present deliverable.
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Notation

A.1 Binomial Classification problem

Indices

i training observation as a customer, time slot combination

Parameters

N number of training observations
pi selection probability for observation i
yi the true outcome for observation i

A.2 Walkway Probability Modeling

Indices

i training observation as a customer, pricing panel combination

Parameters

α∗ proportion of walkaways for current static pricing policy
c1 localization parameter of the s-shaped walkaway curve
c2 shape parameter of the s-shaped walkaway curve

Variables

xi maximum customer selection probability in a price panel
w(xi) walkaway probability for the given customer, price panel combi-

nation
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A.3 GP-GOMEA

Mathematical functions

L the loss function to be minimized
f a symbolic expression derived through GP-GOMEA
f gp the symbolic expression that minimizes L
f wt p the expression that applies a sigmoid transformation to function

f gp

Parameters

y array storing the true outcome for each training observation
X matrix containing the features of all training observations

Sets

P primitive set
Ω set of functions
Φ set of features
Γ set of constants
F solution space of symbolic expressions f

A.3.1 Cost To Serve Estimation Model

Indices

k training observation
i regressor

Parameters

N number of training observations
I number of regressors
βi coefficient of feature xi

yk cost to serve of observation k
xk

i value of regressor i for observation k
W ·D number of time slots

A.4 Prescriptive Heuristic
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Indices

k decision epoch
i customer
(w, d) time slot w on delivery day d

Variables

Sk system state at decision epoch k
fk the prescribed price panel at epoch k
fwdk the prescribed price for time slot (w, d) at epoch k
fb
k the base price panel obtained at a tactical level k

Parameters

wφ weight attributed to profit rewards
wω weight attributed to occupation targets
Pwd(fk) selection probability for time slot (w, d) upon decision fk
cwdk the cost to serve a customer i on time slot (w, d) at epoch k
le
wd(tk) the effective occupation percentage of time slot (w, d) at the time

instant of the decision epoch k
le
wd(tk) the desired occupation percentage of time slot (w, d) at the time

instant of the decision epoch k
n the number of candidate price panels to generate for each incoming

customer
τ the number of time slots affected with price variations to generate

candidate price panels
δ price step variation applied to time slot prices
π− minimum admissible time slot price
π+ maximum admissible time slot price

Sets

∆ the set of available time slots
∆i the set of available time slots for customer i
C set of customers
Φ set of prescriptive heuristic parameters
Fk set of n candidate price panels generate at decision epoch k

Functions

Γ(Sk, w, d) transition function that changes state Sk to contemplate the deci-
sion of customer i of booking time slot (w, d)

φ(fk) expected profit obtained through the application of price panel fk
ω(fk) expected average percentual deviation of real to target occupation

ABT curves through the application of price panel fk
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